The Influence of Intra-Speaker Variability in Automatic Speaker Identification

Timo Becker

Austrian Academy of Sciences
Acoustics Research Institute

IAFPA 2007
The College of St Mark & St John
Plymouth, UK
Ongoing application of automatic speaker recognition in forensic domain

Influencing factors? Coverage?

Main influencing factors (channel mismatch, amount of data) already investigated in huge automatic tests (e.g. by NIST)

Some factors from real forensic casework remain
Introduction
Inter/Intra-Speaker Variability

Term Definitions

- **Inter-speaker variability**
 - Variation of speech observable as acoustic differences of speech from different speakers

- **Intra-speaker variability**
 - Changes of speech caused by different speaking styles → voice quality, articulation rate, stress, pitch contour etc.
 - *Not*: external influences (e.g. transmission channel)
Introduction
Inter/Intra-Speaker Variability
Problems

- Intra-speaker variability can be mistaken for inter-speaker variability → misinterpretations
- Applies to both human and machine
- Machine: unsupervised feature and model generation → not visible
- Feature extraction parameters for machines derived experimentally → robustness known?
- Mismatch of speaking styles in forensic casework:
 - Spontaneous vs. read speech
 - non-Lombard vs. Lombard speech
Automatic speaker identification task: *associate a speaker with a speaker from a set of speakers*
Automatic speaker identification task: *associate a speaker with a speaker from a set of speakers*
Automatic speaker identification task: *associate a speaker with a speaker from a set of speakers*
Automatic speaker identification task:
associate a speaker with a speaker from a set of speakers
'Pool 2010’ data base (Department of Speaker Identification and Audio Analysis, Bundeskriminalamt, Germany)

- 100 male German speakers
- GSM-encoded telephone channel recordings
- Different experimental settings
 - Reading (R)
 - Spontaneous (S)
 - Free (F)
 - Lombard (L)

- Combinations
 - Reading Free (RF)
 - Reading Lombard (RL)
 - Spontaneous Free (SF)
 - Spontaneous Lombard (SL)
Method

Data Base

- Reading: ’The North Wind and the Sun’
- Spontaneous: Description of pictures
- Lombard: 80 dB_{SPL} white noise over headphones

For details see:

Method

Data Base

Mismatch Conditions

<table>
<thead>
<tr>
<th>RF</th>
<th>SF</th>
<th>RL</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>SINGLE</td>
<td>SINGLE</td>
<td>DOUBLE</td>
</tr>
<tr>
<td>SF</td>
<td>SINGLE</td>
<td>DOUBLE</td>
<td>SINGLE</td>
</tr>
<tr>
<td>RL</td>
<td>DOUBLE</td>
<td>-</td>
<td>SINGLE</td>
</tr>
<tr>
<td>SL</td>
<td>DOUBLE</td>
<td>SINGLE</td>
<td>-</td>
</tr>
</tbody>
</table>

- **R/S mismatch**
- **F/L mismatch**
- **R/S & F/L mismatch**
Method
Automatic Speaker Identification System

- 8 kHz, 16 bit signals
- 20 ms frames every 10 ms
- Hamming window
- Pre-emphasis 0.95
- Automatic speech detection
 - 36 s average duration after detection for reading
 - 119 s average duration after detection for spontaneous
 - 27 s overall minimum duration after detection
- Power spectrum (FFT)
- 23 triangular Mel filters (300–3370 Hz)
 → logarithmic filter coefficients
- Cepstral coefficients 1–14 (DCT), discarding c_0
 → Mel frequency cepstral coefficients (MFCC)
Method
Automatic Speaker Identification System

- Speakers models: Gaussian mixture models (GMM)
- d-variate Gaussian distribution function
 \[
 f_i(x) = \frac{1}{(2\pi)^{d/2} \det(\Sigma_i)^{1/2}} e^{-\frac{1}{2} (x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)},
 \]
 where μ is mean and Σ is covariance matrix
- Gaussian mixture density function is weighted sum of M Gaussian distribution functions
 \[
 f(x) = \sum_{i=1}^{M} p_i f_i(x), \quad \sum_{i=1}^{M} p_i = 1
 \]
Method
Automatic Speaker Identification System

- GMM λ consisting of M Gaussians
 \[
 \{(p_i, \mu_i, \Sigma_i) : i = 1, \ldots, M\}
 \] (3)

- Model estimation by expectation maximisation
- 32 Gaussians per model
- Diagonal covariance matrices
- Similarity of feature vectors $X = \{x_k, \ldots, x_n\}$ and speaker model λ by likelihood
 \[
 l(X|\lambda) = \prod_{k=1}^{n} f(x_k)
 \] (4)

- Performance measured as the identification rate
 \[
 IR = \frac{\text{number correct assignments}}{\text{number total assignments}}
 \] (5)
Results

Identification Rates

<table>
<thead>
<tr>
<th></th>
<th>RF</th>
<th>SF</th>
<th>RL</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>-</td>
<td>0.88</td>
<td>0.69</td>
<td>0.53</td>
</tr>
<tr>
<td>SF</td>
<td>0.92</td>
<td>-</td>
<td>0.44</td>
<td>0.57</td>
</tr>
<tr>
<td>RL</td>
<td>0.79</td>
<td>0.66</td>
<td>-</td>
<td>0.84</td>
</tr>
<tr>
<td>SL</td>
<td>0.57</td>
<td>0.69</td>
<td>0.92</td>
<td>-</td>
</tr>
</tbody>
</table>

- **R/S mismatch**
- **F/L mismatch**
- **R/S & F/L mismatch**
Results

Average Identification Rates

<table>
<thead>
<tr>
<th></th>
<th>IR</th>
<th>cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall</td>
<td>0.71</td>
<td>12</td>
</tr>
<tr>
<td>double mismatch</td>
<td>0.55</td>
<td>4</td>
</tr>
<tr>
<td>single mismatch</td>
<td>0.79</td>
<td>8</td>
</tr>
<tr>
<td>only R/S mismatch</td>
<td>0.89</td>
<td>4</td>
</tr>
<tr>
<td>only F/L mismatch</td>
<td>0.68</td>
<td>4</td>
</tr>
</tbody>
</table>

- Intra-speaker variabilities cause performance losses
- High variability \rightarrow low identification rate
- Lowest identification rate when both conditions mismatch
GMM: MFCC feature vectors statistically independent → no temporal information

No inclusion of c_0 → no energy information

Removal of higher cepstral features → smoothed spectrum (on cosine base) → little pitch information included

Summary: Unordered vocal tract transfer function information (distribution) → low identification rates caused by spectral changes and/or changes in distribution of spectral information
Discussion

- Speakers apply rules and processes when speaking style is changed
- Rules are individual → differ for speakers
- Different deviations between reading/spontaneous
 - Changes of speech segment durations
 - Changes of speech segment length relations
 - Changes of spectral properties
 - Extent of changes individual
- Different deviations for free/Lombard
 - Changes of intensity
 - Changes of vowel duration
 - Changes of spectral properties
 - Extent of changes individual
- → changes influence MFCC properties and GMM parameters (supported by results)
- More changes in F/L mismatch than in R/S mismatch
- F/L and R/S different changes
Conclusion

- Mismatch in speaking styles leads to performance loss in automatic speaker identification
- Speaker specific strategies cause intra-individual variability (non-systematic and unpredictable)
- Since automatic speaker identification is unsupervised, only exclusion of mismatches can guarantee system stability
- In forensic settings, careful investigation of speaking styles should precede application of automatic systems
Acknowledgment

Thanks to the

Department of Speaker Identification and Audio Analysis
Bundeskriminalamt, Germany
Thank you for your attention.